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LETTER TO THE EDITOR 

Confinement in vertex models 

John F Nagle 
Department of Physics, Carnegie-Mellon University, Pittsburgh, PA 152 13, USA 

Received 27 November 1984 

Abstract. An example is given of a vertex model that exhibits confinement of quasi-particles 
in the sense that the force required to separate the particles by a distance A x  is independent 
of the separation x for large x. The particular vertex model given here has two basic types 
of confined quasi-particle excitation, a mesonic type involving pairs of quasi-particles and 
a baryonic type involving triplets. Vertex models in general are derived from modeling 
hydrogen bonded crystals and confinement explains the result of a recent experiment on 
ammonia hemihydrate. 

It may be interesting to consider an abstract model that exhibits confinement of 
quasi-particle excitations. The model is a discrete, graph theoretical, cooperative model 
for which the ground state is shown in figure 1. For convenience, only two spatial 
dimensions will be shown in the figures; extension to three or more dimensions is 
straightforward. There are two intrinsically different kinds of vertices, designated A 
and B in figure 1. Each A (B) type is connected by an edge to three vertices.of B (A, 
respectively) type. Notice that there is no requirement that the vertices be arranged 
on a spatially regularly lattice, although they will be so drawn in the figures for 
convenience. Each edge joining an AB pair of vertices has an arrow associated with 
it. In the ground state each arrow points from an A vertex to a B vertex. The energy 
E, of any state s, consisting of any configuration of arrows, is given as a sum of the 
energies ESi(us i )  of each individual vertex, designated as uSi for the ith vertex in the 
sth state, 

where the different kinds of vertex arr0.w configurations v that may occur at a given 
site i are shown in figure 2 along with their energies E (  U). The ‘Hamiltonian’ in ( 1 )  
is purely classical, like the Ising model. This vertex model may be made into a 
dynamical model in several ways. One could simply introduce a stochastical arrow 
reversing dynamics, similarly to the stochastic Ising model (Glauber 1963). One could 
also introduce a quantum tunnelling term along the lines of models for ice (Chen et 
al 1974). This aspect of the model will not be developed further in this paper, even 
though mention will be made of rearrangements from state to state in the basically 
classical model. 

The regime of interest for the vertex energies E (  U )  in figure 2 is y > S >> E > 0. An 
excitation from the ground state may be obtained by reversing one arrow. This creates 
two S vertices which will be described as a pair of quasi-particles of 6 type. To separate 
the two 8 particles further one may reverse any arrow adjacent to the already reversed 
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Figure 1. The ground state of an abstract vertex 
model. Vertices of A (B)  type are represented by 
full (open, respectively) circles. 

”A A X X X  
6 E Y E ( v )  0 

Figure 2. The vertex configurations and the vertex 
energies. In the first (third, respectively) row are the 
different kinds uA ( oB, respectively) of arrow arrange- 
ments that may occur at any A (B, respectively) 
vertex. In the second row are the vertex energies 
E ( u )  corresponding to the vertex configurations 
above and below. Each S and E type of vertex 
configuration has two additional symmetrical 
equivalents under 2 r / 3  rotations, yielding a total of 
eight vertex configurations possible at each vertex. 
Those arrows that are reversed with respect to the 
ground state and the associated edges are drawn with 
bold lines. 

Figure 3. Some selected higher energy states. 
Towards the left of the figure is shown a pair of 6 
vertices and the connecting string of E vertices. In 
the centre is shown the smallest example of an E 

cycle. Towards the right of the figure is shown a Y 
particle consisting of a y vertex joined by three E 

strings to three 6 vertices. Those arrows that are 
reversed with respect to the ground state and the 
associated edges are drawn with bold lines. 

arrow; this results in the retention of two S vertices and converts a 0 vertex to an E 

vertex. Further separation of the two 6 vertices creates a string of E vertices between 
them as shown in figure 3. Since E > 0, the force required to separate the 6 particles 
is independent of the distance of separation between them and has a magnitude that 
is roughly 4 ~ / 3 d  where d is the mean distance between nearest-neighbouring vertices. 

As shown in figure 3, there are other low lying excitations in this vertex model; in 
particular there are cycles (i.e. loops or rings) of E vertices which, unlike the strings 
described in the last paragraph, do not end at two S vertices. Such cycles of E vertices 
can be formed by creation of a S pair followed by stretching the string around one of 
the topological cycles in the lattice graph, culminating in annihilation of the S pair. 
Clearly, the vacuum state for embedding a pair of S particles is not the ground state, 
but is a renormalised state containing E cycles. The degree of renormalisation can be 
determined by introducing an effective temperature T in the model and finding the 
renormalised vacuum state corresponding to the partition function 

Z ’  = 1’ exp( - P E , ) ,  
E 

where /3 = l / k T  and the prime means that the sum is constrained to states s with 
vertices only-of 0 type or E type in figure 2. Similarly, the states with one pair of 
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quasi-particle 6 vertices will be dressed with E cycles in addition to the string of E 

vertices between the two 6 vertices. If T is small, then there are few E cycles in the 
renormalised vacuum state and the 6 pair is clearly still confined, though the average 
statistical force for separation is smaller because a fraction of the string stretching, 
arrow-reversing, steps will involve changing existing E vertices in E cycles into 0 vertices 
of ground state type. For larger T a better criterion for confinement involves consider- 
ation of 

where “ indicates that the sums are over states consisting of only two 6 vertices and 
r,, and raz are -the I’ocations of the S vertices in the sth state. For small T, (r :2)  is 
expected to be finite, meaning that the 6 pair is confined, because the ‘entropy’ factor 
corresponding to the multiplicities of longer strings of n E vertices goes roughly as 2” 
whereas the energy factor goes as exp(-nps). This rough argument also suggests that 
( r :2 )  will become infinite at a critical temperature T,. 

In the case of a regular two-dimensional honeycomb lattice shown in the figures 
the critical temperature is given by kT, = 2e/ln 3. This follows from the isomorphism 
of the states in ( 2 )  to the graphs for the high-temperature series expansion (Domb 
1960) for the Ising model on the honeycomb lattice with interaction strength J, the 
corresponding relation for the weights in the respective partition functions, 

tanh( J /  k T )  = exp( - E /  k T ) ,  (4) 

and the exact result for T, (Domb 1960). Furthermore, the states containing a 6 pair 
are isomorphic to the dominant graphs for the spin-spin correlation functions in the 
hyperbolic tangent expansion for the Ising model ; the isomorphism is not complete 
because tadpole and dumbbell graphs (Domb 1960) are included in the spin-spin 
correlation functions, but these do not correspond to 6 pair states. Nevertheless, the 
sum in (3) can be approximated as a sum over all distances of the spin-spin correlation 
functions times ( rs ,  - a)*. For large E /  T, which corresponds to small J /  T in (4), these 
correlations decay to zero exponentially (McCoy and Wu 1973) with distance r,, - rs2, 
so the sum in (3) is finite strongly suggesting that the 6 pair is confined. However, for 
small E /  T, which corresponds to large J /  T, the Ising model correlations decay to a 
non-zero value related to the spontaneous magnetisation, so the sum in (3) diverges 
corresponding to the 6 pair not being confined. Incidentally, the vertex model in 
figures 1-3 could also be described in terms of monomers and dimers on a more 
complicated lattice graph, following Kasteleyn’s method of solving the Ising model 
(Kastelyn 19631, but the y vertex is then not seen so clearly as a distinct entity, so that 
description will not be pursued. 

With the introduction of an arrow reversing dynamic, confined pairs of 6 vertices 
are mobile as a pair. Movement of the pair can proceed by reptation wherein one 6 
vertex advances to increase the length of the string and the other S vertex follows the 
first 6 vertex along the string, thereby restoring its original length and advancing the 
6 pair by one edge length. This mobility only involves simple sequences of arrow 
reversal, one edge at a time. 

A different sort of elementary excitation is also shown in figure 3. This involves 
three 6 vertices, each connected by a string of E vertices, to a central y vertex. This 
trio of quasi-particles will be called a Y quasi-particle. The constituent parts of the 
Y particle will also be confined at low T. Unlike the 6 pair, the Y particle is not 
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mobile by simple reptation. To obtain mobility, a means must be derived to move the 
y vertex. This may be accomplished by momentary annihilation of the y vertex with 
one of the S vertices followed by reformation of the y vertex and the 6 vertex elsewhere 
on the string of E vertices connecting the remaining two S vertices. A final feature of 
the Y particle as presented is that two of its S vertices may annihilate each other 
leaving a loop of E vertices connected to the y vertex. 

Let us now consider a modification of the above model that prohibits the feature 
in the last sentence of the last paragraph. Instead of one arrow on each edge of the 
lattice, let there be three arrows, coloured red, green and blue, respectively. There are 
now S3 = 512 vertex configurations, most of which will be prohibited by assigning them 
infinite energy. Vertices will have non-zero finite energies E (  6) if and only if the arrows 
of one and only one colour have the configurations shown as E vertices ( 8  vertices, 
respectively) in figure 2 and if and only if the arrows with the other two colours are 
in the ground 0 energy configuration in figure 2. In addition, vertices will have energy 
y if and only if there are precisely three reversed arrows, each of diferent colour, and 
each along a different edge adjacent to the y vertex. Other vertex configurations are 
prohibited except for the zero energy configurations with arrows of all three colours 
in the ground state in figure 2. The quasi-particles now consist of ( 1 )  three different 
colours of S pairs connected by a coloured E string and (2) Y particles consisting of 
a y vertex and three 6 vertices, each having a different colour and each connected to 
the y vertex by an E string of the same colour. 

The genesis of this kind of model is the vertex models in statistical mechanics (Baxter 
1982). In turn, the vertex models have their origins in hydrogen bonded crystals, such 
as ice (Onsager and Dupuis 1960), KH2P04, (Slater 1941), SnClZ2H20 (Salinas and 
Nagle 1974), C U ( H C O O ) ~ ~ H ~ O  (Youngblood er al 1980) and many others. The arrows 
on the edges in the vertex models simply correspond to the bimodal, non-symmetric, 
but reversible hydrogen bonds in the crystal. The vertex models for which the statistical 
mechanics has been solved exactly (Baxter 1982) correspond to hydrogen bonded 
crystals with no mechanism for dynamic equilibration. The analogy to the model 
presented is S = CO = y in (2).  Dynamic mechanisms for thermal equilibration in real 
hydrogen bonded crystals involve charged defect vertices which are either of ionic 
type or Bjerrum type (Onsager 1973) and are aptly thought of as quasi-particle 
excitations. The high energy S vertices in the model presented here play the same role 
as the ionic type excitation in hydrogen bonded crystals, even though the electric 
charge analogy is not obligatory. 

Confinement of ionic defects provides an interpretation of a recent experiment on 
a hydrogen bonded crystal, ammonia hemihydrate (Bertie and Devlin 1983). It was 
observed that a small concentration of D 2 0  codeposited in ice results, upon warming 
the sample, in the decay of DzO vibrational modes into HOD modes. This corresponds 
to the passage of ionic defects through the DzO molecules (Onsager 1973). A similarly 
prepared sample of D 2 0  in 2(NH3)Hz0 shows little decay of the DzO modes. One 
explanation (Bertie and Devlin 1983) is that the basic energy difference between NH...O 
and N. .HO hydrogen bonds prevents proton hopping necessary for ionic defect 
transport. However, this does not prevent concerted hopping such as NH...OD.-.N 
going to N...HO...DN . Another difference between ice and ammonia hemihydrate is 
that the H 2 0  locations in ice are highly symmetric so that an H 2 0  dipole has six 
orientations with very nearly equal energy and the corresponding state of arrows is 
disordered. In contrast, in 2( NH3)H20 the crystal symmetry (Siemons and Templeton 
1954) is much lower. Assuming that only one orientation is preferred (Siemons and 
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Templeton 1954) and the others cost a higher energy E leads to an ordered state of 
arrows. This in turn leads to confinement of the ionic defects and to little decay of 
the D 2 0  modes. More generally, confinement of pairs of defects would account for 
the much slower thermal and electrical relaxation times in low-temperature ordered 
phases, including ferroelectric phases, of hydrogen bonded crystals. However, the 
interplay between the ionic defects and the Bjerrum defects that gives rise to the DC 

current must be remembered when interpreting data. 
The particular model presented here was chosen because of its local symmetry and 

the possibility of the additional Y quasi-particle. It does not have any known direct 
hydrogen bonded crystal analogy. It may be emphasised that this model depends 
crucially upon the topological discreteness of the underlying space, although no length 
scale or geometrical regularity need be specified. In view of developments in discrete 
mechanics (Friedberg and Lee 1983) and lattice field theories (Wilson 1974, McCoy 
and Wu 1978, Baker and Kincaid 1981) and in view of some analogies between the S 
pair with the current view of mesons consisting of two bound quarks and of the Y 
particle with baryons consisting of three quarks, perhaps such models, suitably modified 
to be acceptable field theories, would also be of some interest outside the area of 
condensed matter physics of hydrogen bonded crystals. In any case, the confinement 
of quasi-particles is a natural feature in ordered phases of vertex models and hydrogen 
bonded crystals. 

This research has been supported by NSF Grant DMR 8 11 5979. 
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